跳到主要内容

话题

等离子体物理学

等离子体物理学

Fusion: 方式 ahead

01 Mar 2006

The recent decision to build the world's largest fusion experiment - 国际热核实验堆- in France has thrown down the gauntlet to fusion researchers worldwide. 理查德·皮茨, 理查德·巴特里 and Simon Pinches describe how the Joint European Torus in the UK is playing a key role in ensuring 国际热核实验堆will demonstrate the reality of fusion power

驯服星星

概览:融合力量

  • 融合是两个轻核结合形成较重核并释放能量的过程
  • 通过氘和tri反应利用地球上的聚变将导致环境友好,几乎无限的能源
  • One promising route to fusion power is to magnetically confine a hot, dense plasma inside a doughnut-shaped device called a 托卡马克
  • The 喷射 托卡马克 provides a vital testing ground for understanding the physics and technologies necessary for an eventual fusion reactor
  • 国际热核实验堆is due to power up in 2016 and will be the next step towards a demonstration fusion power plant, which could be operational by 2035

到2025年,地球’的人口预计将达到80亿。到下个世纪之交,它可能多达12 十亿。即使工业化国家找到减少能源消耗的方法,人口的空前增长–加上发展中国家日益繁荣– will place huge demands on global energy SUPplies.

作为我们的主要能源– fossil fuels –开始耗尽,燃烧它们引起越来越多的环境关注,人类面临寻找新能源的挑战。常规核能产生长寿命的放射性废物,而风能,波浪能或太阳能等可再生能源则提供可变的输出,不可能满足总需求。

核聚变提供了一种潜在的安全,环保和经济竞争的能源。一个核聚变工厂要运行一整年,发电约70亿千瓦时,将仅使用100 公斤氘和三吨锂–在此过程中不释放温室气体。相比之下,一个典型的燃煤发电厂消耗300万吨燃料,产生约11吨燃料。 百万吨二氧化碳,以产生相同的年产量。

去年,当国际热核实验反应堆(ITER)项目的合作伙伴最终决定该设施将在法国的Cadarache建造时,研究人员朝着聚变动力的目标迈出了重要的一步。国际热核实验堆之间的谈判’s members –中国,欧盟,日本,俄罗斯,韩国和美国–在那将主持€自2003年以来,已有50亿台机器陷入僵局。经过艰苦的讨价还价后,法国将成为最受青睐的工厂,日本的池田池田一夫(Kaname Ikeda)接任总干事(请参见第12页;仅印刷版)。从那时起,印度也加入了该项目,使世界一半’现在,这种科学努力代表了人口的增长。

国际热核实验堆– which means “the way” in Latin –计划于2016年启动,这将是迈向商业融合力量的倒数第二个步骤。但是,尽管现在已经可以建造2万吨的设施,但是在现有的聚变实验中仍有大量工作要做。英国的欧洲联合圆环(JET)在这项工作中发挥着至关重要的作用,是唯一能够使用与ITER计划相同的燃料和材料运行的设备。而且,JET是目前唯一足以应付最终商业化聚变反应堆所期望的巨大功率负载的聚变实验。

从月光到阳光

欧内斯特·卢瑟福曾经著名地宣称“任何期望从原子的转变获得动力的人都在谈论月光”。但是科幻小说有成为科学事实的习惯,而卢瑟福’情感被否决了少于10个 几年后,恩里科·费米(Enrico Fermi)于1942年进行了控制性核裂变的演示。另一方面,聚变被证明更加难以实现。

核聚变是恒星的动力源,因此是创造我们周围所有化学元素的机制。这是两个轻核结合在一起形成第三个较重核的过程:由于最终核的质量略小于初始核的总质量,因此能量通过爱因斯坦释放’著名的质量与能量等价 (E = mc2).

例如,在太阳中,能量是通过一连串的反应释放的,该反应以两个质子融合成氘核开始–含有一个质子和一个中子的氘核。然后,氘核与另一个质子结合,生成3氦核,而3氦核又与另一个3氦核融合而形成4氦核(α粒子)。这个过程需要数亿年的时间,这是相当偶然的,因为如果发生得太快,太阳能炉将在地球上的生命有机会进化之前就已经烧毁了!当然,不利的一面是质子聚变不能用作地球聚变能量的可行来源。

但是有一条更快的途径涉及氘和tri核的融合–含有一个质子和两个中子的氢的同位素当这两个原子核融合时,它们会产生一个4氦原子核和一个中子。因为此反应仅涉及质子和中子的重排,而不涉及质子向中子的转化,所以它的反应比质子聚变快得多。但是,该反应的最终质量缺陷较低,这意味着释放的能量较少。但是,只要氘核和核可以以10至100的能量无限期地相互碰撞, keV,反应以有用的速率进行,用于发电。

One way to achieve this situation is to heat the reactants so that a neutral gas of ions and electrons (a plasma) is produced, and to confine this hot plasma for long enough for significant fusion to occur. In the Sun, this confinement is SUPplied by the star’巨大的引力场。在地球上,仅靠限制是不够的:还必须将血浆与限制介质隔离,以防止杂质污染等离子体并降低聚变效率。

有两种创建此类条件的方法。第一种是磁约束,其中磁场将带电的等离子体粒子保持在安全壳内。另一个是惯性约束,即燃料以如此高的速度压缩,使得在燃料有时间膨胀并接触容器壁之前就发生了熔化。后一种技术是氢弹的原理,目前正在一些研究实验室中使用大功率激光进行研究。自1958年以来,研究人员一直在追求磁约束聚变,当时许多聚变研究在美国密歇根州进行了解密。“日内瓦和平原子”会议。到目前为止,就最终发电厂而言,最有前途的方法是使用“tokamak” – a concept pioneered by Soviet physicists Andrei Sakharov and Igor Tamm in the 1950s. ITER, like 喷射, will be a 托卡马克 .

A 托卡马克 is a doughnut-shaped vessel or torus, in which a helical magnetic field insulates charged particles in the plasma from the surrounding walls. The helical field is produced by combining a 环形的 field, which guides particles “the long way round”圆环和另一个“poloidal”领域,这会引导他们进行短暂的绕行(图 1). The former is provided by large external coils, while the latter is generated by a current flowing through the plasma in the 环形的 direction. This plasma current arises from a 环形的 electric field that is produced inductively by a coil passing through the centre of the torus, which acts as the primary winding of a transformer (the second winding is provided by the plasma ring).

For fusion to occur, nuclei must be slammed together fast enough and often enough to overcome their Coulomb repulsion and make the process self-sustaining. A 托卡马克 therefore needs to maintain high densities of fuel ions at enormous temperatures – about 100 million degrees –足够长的时间。面对众多的等离子体不稳定性,实现这一目标对于融合研究人员而言是一项重大挑战。

但是,恰恰是缺乏“runaway”使核聚变比裂变更具吸引力的聚变反应堆是一种可能,其中的挑战是使燃料在几年内缓慢反应。此外,聚变不会产生高放射性或易裂变产物,其燃料自然会大量存在(氘在水中的浓度约为1 6700中的一部分,可通过电解轻松提取; can可以在聚变反应堆本身中繁殖)。

在可能用于陆地聚变的所有轻元素组合中,氘-reaction反应在最低温度下以最高速率进行,因此是聚变电厂的最佳候选者。每个反应产生的能量为17.6 MeV, which is shared by an alpha particle and a neutron. The neutrons, carrying most of this energy, escape the confining fields and are captured in the walls of the 托卡马克 where they generate heat. As a result, coolant circulating through the walls can be passed through a heat exchanger to produce steam in order to drive turbines, as in a conventional power station. The walls also double as a “breeding blanket”其中中子与锂反应生成更多的tri。

The alpha particles, in contrast, are confined by the magnetic field and transfer their energy to the deuterium and tritium fuel ions via Coulomb collisions. When this alpha heating is sufficient by itself to maintain the density and temperature of the plasma at the required levels, the process becomes self-sustaining and the plasma is said to have ignited. Through this process, 国际热核实验堆aims to produce about 400 兆瓦的融合功率持续了几分钟。这等于一个“fusion gain”(熔化功率与提高等离子体温度所需的输入功率之比)约为 Q DT  = 10. When Q DT  = 1我们说实现了收支平衡,并且 Q DT  = ∞点燃等离子体。

融合增益的想法最早是在50多年前由一位名叫John Lawson的年轻工程师提出的,他正在英国AERE Harwell从事当时秘密的ZETA融合实验。动机“他热心的物理学家对现实的期望”, Lawson deduced a condition based on the plasma density and confinement time that would have to be satisfied for a useful reactor. The value of the so-called 三重产品 derived from the Lawson criterion has increased by more than five orders of magnitude since the early 托卡马克 experiments, leaving Rutherford’对核裂变的悲观前景也严重地错位了进行核聚变(图2)。

融合挑战

实现聚变能之所以要求如此之高的原因之一是与基础物理学相关的大量时间和空间尺度。例如,要了解氘-反应中产生的氦气如何影响等离子体的稳定性,需要长期在大型设备中进行测试。为了进一步使事情复杂化,将不同的时间尺度联系在一起:例如,宏观尺度上的等离子体结构取决于电子拉莫尔半径尺度上的湍流过程(约0.1 毫米),而数百微秒内的等离子体不稳定性会影响材料的腐蚀。

Only with 国际热核实验堆can these critical aspects of fusion be addressed simultaneously. The challenge facing the fusion community now is to provide as much information as possible to assist ITER’的研究计划。这就是JET脱颖而出的地方。作为目前正在运行的最大聚变设备,JET可以访问ITER的许多关键物理机制。它还具有类似的技术能力,例如使用tri燃料,在面向等离子体的表面上使用铍以及具有与ITER类似的加热系统。

喷射 has recently been upgraded, with various sensors now in place to improve our knowledge of properties such as the temperature, density and shape of the plasma. Further increases in the heating power are also planned in 2008, placing 喷射 in a much stronger position to address the plasma-physics and technological challenges of burning-plasma regimes. In addition to understanding the physics of fusion plasmas, the performance of a 托卡马克 is ultimately determined by boundary conditions imposed at its surfaces. This means dealing with the perennial thorn in fusion’侧面:选择直接面对等离子体的表面使用哪种材料。

Early 托卡马克 s were simple devices in which the plasma had a circular cross-section and was faced only by the steel walls of the vacuum vessel. To reduce direct plasma-wall interactions, small objects called limiters were strategically placed on the walls to define a “last closed”磁性表面。超过这一点,载有颗粒和热量的磁力线会在限制器上终止,从而使大部分等离子体与表面的相互作用距离壁只有几厘米。

管理此互动或“particle exhaust” is not an issue in small 托卡马克 s, but it becomes critical when building a large device such as ITER. Sustained, high-power operation produces considerable particle and heat loads, leading to the release of surface material. Such impurities can make their way into the plasma, polluting it and severely reducing the 融合增益. Furthermore, the alpha particles that sustain the temperature in a fusion plasma must also be removed before they themselves become a source of pollution.

Some modern experimental 托卡马克 s still use limiters to deal with 颗粒排气. However, most – including 喷射 and 国际热核实验堆–赞成使用电磁线圈来产生“X-point” where the 极体 magnetic field is zero (figure 3). The advantage with the magnetic-coil approach is that field lines diverging away from the X点 can be diverted onto a remote target where the plasma-surface interaction and 颗粒排气 can be localized.

The X点 configuration also brings other important benefits: the weak 极体 field near the zero-field point means that magnetic field lines make many transits around the torus before terminating on the divertor targets. As a result, the plasma at the targets is cool enough to allow electrons and ions to recombine and locally extinguish the plasma “flame”。低温还允许产生高中性压力的区域,从而使聚变反应产生的氦灰分有效地泵出系统。这以及减少目标的热负荷,对于ITER和未来发电厂的成功至关重要。

今天’托卡马克内部的偏滤靶和其他防护装甲几乎完全由石墨或碳纤维复合材料制成。碳原子质量很低,这意味着释放到等离子体核中的所有碳原子都会在高于约500的温度下被剥离电子 eV。结果,由于电子跃迁,等离子体通过光子发射损失的能量更少。然而,在边缘区域和偏滤器区域的较低温度下,碳非常有效地辐射,因此会耗散能量,否则这些能量将被引导进入等离子体-表面相互作用。碳也很坚固,能够承受高温。到目前为止,碳还不错,但是碳还有两个主要缺点:它与等离子体燃料发生化学反应,并且像海绵一样捕集燃料。这会导致材料腐蚀加剧和tri保持的不可接受水平。

那么我们应该为ITER使用哪种材料呢?目前,机器设计师正在安全地工作,在高热通量分流器区域使用碳来应对最高温度,并在其他地方使用铍和钨以最小化tri的保留。然而,就等离子体在最终的聚变反应堆中的terms保留而言,即使在面对等离子体的表面中如此低的碳与金属比率(约1%)也可能是不可接受的。 喷射和ITER的一部分’因此,我们的目标是寻求一种全金属的解决方案。

In fact, some 托卡马克 s already use all-metal surfaces. The Alcator C-Mod device at the Massachusetts Institute of Technology and the Italian FTU machine in Frascati have for many years been running with walls made entirely of molybdenum. And graphite plasma-facing components in the ASDEX-Upgrade 托卡马克 at the 马克斯·普朗克等离子体物理研究所 in Garching, Germany, are being systematically replaced with tungsten versions to study high-power plasmas with a metal wall (see “当选择不是无关紧要”).

But as the single existing 托卡马克 capable of handling beryllium, it is only at 喷射 that the material mix planned for 国际热核实验堆can be tested. Preparations are therefore under way to install beryllium in the appropriate locations to gain time in the first few years of 国际热核实验堆exploitation. Combined with the heating upgrade scheduled for the same period, 喷射 will allow us to produce “first-wall”功率负载接近ITER中的预期。

高性能的价格

Even with the right materials, the walls of a 托卡马克 may still not be resilient enough to withstand the most violent energy emissions from the plasma. These emissions, which can heat the surface to several thousand degrees in a fraction of a second, are a side effect of operating the 托卡马克 in the magnetic X点 configuration.

除了提供方便的动力排出机制外,X点配置还可以在等离子体边缘附近自然产生传输势垒(压力梯度很高的区域)。这导致了一种高能量限制的制度,称为“baseline scenario” for 国际热核实验堆operation. Crucially, the 基准情景 will allow sufficient 融合增益 for researchers to study the materials, technologies and plasma control that will be important for an eventual fusion reactor. But the improved confinement comes at a price: the strong pressure gradients across the transport barrier can effectively strip off the outer layer of the plasma and throw out violent bursts of particles and energy. These “edge localized modes”(ELM)是一把双刃剑。它们实际上可以帮助粒子逸出等离子体,并防止氦灰在工作的反应器中积聚。但是,如果不加以控制,这些爆发会太快地腐蚀面向等离子体的表面,以至于电厂无法生存。

The key to dealing with ELMs is to get the heat out of the plasma edge more frequently or more smoothly, preventing the build up of pressure so that the modes do not get too large. For the first time in any 托卡马克 , researchers at 喷射 have recently demonstrated an operating regime with tolerable ELMs that should also work in ITER. To do this, they deliberately introduced impurities such as nitrogen in the edge regions, which radiate energy and reduce the efficiency of the transport barrier, leading to a milder type of ELM. The problem is that disturbing the transport barrier also degrades the overall energy confinement, which would reduce the performance of a fusion reactor.

补偿局限性损失的一种方法是在更高的等离子体电流下工作。 2.5 JET使用的MA电流外推至17 ITER中的MA(其设计最高电流),几乎没有提高性能的余地,并导致操作风险增加。因此,研究人员正在寻找其他方法来改善在较低等离子体电流下的性能。例如,JET团队目前正在研究改变等离子体形状是否会增加每个ELM之间的热损失,而又不会过多降低能量限制。在其他地方,ASDEX-Upgrade托卡马克的研究人员已将冷冻的氘颗粒以高频注入等离子体的边缘,以便“pace”ELM。圣地亚哥通用原子实验室的DIII-D设备采用外部线圈“churn up”磁性表面,以增加粒子传输并减轻ELM。

保持等离子燃烧

The key problem with the 基准情景 is that the plasma current is driven by a transformer, making 托卡马克 s inherently pulsed devices. Any power plant using a 托卡马克 in this regime would be inefficient and expensive since the device would cool down between pulses, experiencing large thermal stresses. Fortunately, there is another way to drive the plasma current called the 引导程序 effect, with reference to the infamous Baron Münchhausen, a German serving as an officer in the Russian cavalry who claimed he could lift himself up by his own 引导程序s! In short, the 香蕉-shaped cross-sections of particle orbits in the plasma lead to a net current in the presence of strong density or temperature gradients (figure 3).

In order for a 托卡马克 reactor to be economically viable, this “bootstrap current” has to dominate over the current driven by the solenoid or external heating systems. The trick to achieving this so-called advanced scenario (as opposed to the 基准情景) is to reduce the size of the turbulent eddies inside the plasma, in order to trigger “内部运输壁垒”。这些涡流通常在磁性表面上传输颗粒并向外加热。但是可以通过对等离子体施加剪切旋转来分解它们(参见图4),或者通过修改等离子体电流的分布以减少自然向外“precessional drifts”驱动它们的电子轨道。

To gain control of advanced scenarios the current distribution required to maintain the transport has to be similar to the naturally generated 引导程序 currents. At 喷射, such conditions have already been found; but on the long timescales required in a fusion power plant, we will need to provide some externally driven current and heat to prevent the plasma from evolving to a lower-performing state.

喷射在此具有几个关键功能,其中最直接的就是由于三种不同类型的加热系统而具有各种驱动电流的能力。这使得JET成为唯一可以独立控制压力和电流分布的设备。喷射’s的大小还意味着等离子电流会在较长的时间范围内扩散,从而使所需的电流分布“frozen in”在初始等离子体形成后不久加热。最后,与等离子演变的时间尺度相比,JET的长脉冲长度(数十秒)使我们能够在存在运输障碍的情况下控制这些先进的情况。

These capabilities will be dramatically improved with further heating upgrades at 喷射, and efforts are now under way to improve the control over barriers that encompass larger volumes of plasma. This is being complemented by studies at other fusion experiments. In 2003, for example, researchers working on the TCV 托卡马克 in Lausanne, Switzerland, achieved almost 100% 引导程序 operation, while the use of current drive for very long pulses is being explored at the Tore Supra device in Cadarache.

鉴于这些高级方案带来的挑战,人们越来越有兴趣寻求折衷方案“hybrid” scenario. Like advanced scenarios, the 杂种 uses a strong 引导程序-driven current, but it does this without relying on 内部运输壁垒. The 引导程序 current gives a broader and more stable current distribution than the 基准情景, allowing operation at higher plasma pressures. This, in turn, maintains the strong 引导程序 – a virtuous circle. Nevertheless, the 引导程序 current is not strong enough to completely replace the inductive drive, so the 托卡马克 remains pulsed. But since the pulses are much longer than in the 基准情景, the 杂种 could allow a power plant to be operated continuously for many hours.

燃烧物理学

今天和今天之间的巨大差异’s fusion devices and a real working reactor is 方式 the plasma is heated. In research 托卡马克 s, external heating systems are required, while a reactor plasma (by definition) will burn in a self-sustaining way thanks to the energetic alpha particles produced in the deuterium-tritium reactions. Since these particles originate within the plasma itself, we need to be able to manage this alpha heating without the luxury of external controls. Only high-current 托卡马克 s such as 喷射 allow us to confine and study these fusion-born alpha particles (see “Burning Issue).

尽管对于聚变反应堆来说是必不可少的,但是α粒子也具有较暗的一面:它们可以驱动一种称为剪切Alfv的等离子体不稳定性én波,其中带电粒子沿着磁场线传播,使这些线像吉他弦一样振动。阿尔夫én波的速度可以达到光速的5%,但是融合产生的α粒子可以传播得更快,因此会产生共振。这些不稳定性会重新分布α粒子并改变加热曲线,甚至完全导致α约束的丧失,从而给第一壁的完整性带来了问题。

但是,α粒子也会影响其他等离子体的不稳定性。一个很好的例子是“sawtooth” instability, whereby the rising temperature in the core of the plasma suddenly crashes and releases a burst of heat. The alpha particles can help hold off the 锯齿 until a higher temperature is reached. The downside is that the final crash is larger, and it can trigger other performance-degrading instabilities. However, 喷射 is pioneering the use of localized current drive to help destabilize 锯齿 instabilities thereby making them smaller –ITER也预见到了一种技术。

朝最终目标迈进

当被问及建造第一座聚变电站需要多长时间时,苏联物理学家列夫·阿蒂西莫维奇(Lev Artsimovich)– one of the pioneers of 托卡马克 research – replied that “当社会需要融合的时候”. That time is fast approaching, and with the construction of 国际热核实验堆finally about to start, efforts are now gearing up for the longer-term prospect of fusion energy.

国际热核实验堆is intended to be the single experimental link required between existing devices and a demonstration power plant, loosely referred to as “DEMO”. However, several issues of importance for 演示 cannot be addressed with ITER. Perhaps the most important is the need to develop radiation-resilient materials, particularly for 演示’钢制真空容器。国际热核实验堆’短的工作周期意味着中子引起的损坏将不再是问题,从而阻止了在高中子通量下对材料进行有用的测试。

解决此问题的一种方法是使用连续中子源,该中子源产生的通量与反应堆中预期的通量相当,但测试体积较小。这种被称为国际聚变材料辐照设施(IFMIF)的设备将在日本安装,它将与ITER并行运行。

The IFMIF is part of a package of facilities being planned to speed the development of fusion power. The package also includes a SUPerconducting upgrade to the world’s second largest operating 托卡马克 – JT-60U in Japan – and the founding of a new fusion research centre, also in Japan, dedicated to modelling scenarios for 国际热核实验堆and for performing 演示 studies. Later, such a facility might also become a remote experimental control centre for ITER, reducing the need to relocate people to Europe and allowing round the clock operations by exploiting the time difference between Japan and Europe.

演示 construction would probably start some time in 2025, with operation perhaps 10 years later. Commercial power plants could then be up and running by around the middle of the century. In the shorter term, it is hoped that the first plasmas in 国际热核实验堆will be achieved by 2016, with full-power deuterium-tritium operation by about 2021. Almost 50 自融合研究解密以来已经过去了多年;但在不到50年的时间里,地球上的人造太阳终于可以成为现实。

当选择不是无关紧要

聚变反应堆最关键的方面之一是用于聚变反应堆的材料“first wall”直接遇到等离子体的表面。这些表面中的一些必须承受超过1000的温度 可以连续多年保持高水平,并且还将面临巨大的中子通量。第一壁表面必须选择成使得腐蚀速率和随后的等离子体污染低于可接受的极限。

ITER的当前材料选择’s main wall is beryllium, because it has a low atomic number, low tritium retention and efficiently removes any oxygen present in the 托卡马克 . The divertor, which will experience the highest temperatures (V-shaped notches visible in the bottom of the chamber), will be built from carbon on the target plates and tungsten elsewhere.

在JET,正在准备进行一次雄心勃勃的升级,以模仿这种第一道墙的混合物,从而为ITER提供一些早期的作战后果指示。但是,如果没有一台ITER大小的机器,我们将永远不会相信特定的材料选择将使聚变能成为现实。例如,在持续7分钟的单次放电中,ITER将在三年运行中将其积聚到分流器中的颗粒数量大约是JET管理的三倍!此外,与仅约0.2相比 在JET,ITER将吞噬大量的50 每次排放克燃料。因此,如果在ITER中使用碳–因为它是JET和其他托卡马克人的丰富表现–retained的保留量可能很快超过350 g核许可限制施加的限制。另一方面,还不能确定捕获trap的金属是否能够在不熔化的情况下处理ITER中预期的高瞬态偏滤器热负荷。国际热核实验堆’因此,我们的任务是运用从数十年的聚变研究中获得的知识来解决在等离子体燃烧环境中如果没有长脉冲,高功率运行就无法解决的问题。

刻录问题

国际热核实验堆的中心问题将是改善我们对聚变燃烧过程的控制。这意味着寻找方法来准确确定聚变反应中产生的快速粒子的位置和能量。随着最近增加的中子发射光谱学和闪烁检测技术,JET在这项工作中发挥了重要作用。在过去的几年中,JET还能够执行伽马射线成像,该成像依靠主要等离子体中的痕量杂质(例如铍)来提供有关α粒子的信息。在这里,被高能α粒子撞击的铍离子会产生碳离子,中子和特征性的伽玛射线,这使我们可以直观地看到α粒子的空间分布和温度(左图)。 α粒子在等离子体右侧的定位是加热系统和该区域中较低的磁场强度的结果。这与被困者的完整轨道轨迹计算是一致的“banana”右侧的alpha粒子,确认了我们的预测并验证了该方法的有效性“visualizing”燃烧的血浆中的α粒子。

喷射 in context

1973

喷射 design commences
1979
实验室奠基石
1983
16人完成建设并运营JET 欧洲国家的主持“EURATOM”
1984
正式开幕式
1985
国际热核实验堆project launched
1991
喷射提供世界’s first deuterium-tritium 托卡马克 experiment, producing 1.7 兆瓦聚变功率约0.5 s
1997
喷射 produces 16 2兆瓦的聚变功率 s – a world record
2000
喷射’受欧洲融合发展协议(EFDA)控制的科学计划
2003
Experiments with trace quantities of tritium 2005 国际热核实验堆site chosen as Cadarache in the south of France

更多关于: 融合力量
C M Braams和P E Stott 2002核聚变:半个世纪的磁约束聚变研究 等离子物理控制。融合 44 1767
J D Lawson 1957年,一些用于生产热核反应堆的标准 进程物理社会 。 乙 70 6-10
J B Lister和H Weisen 2005我们将从ITER学到什么? Europhys。新闻 36 47-51
G McCracken和P Stott 2005 融合:宇宙的能量 (爱思唯尔牛津)
帕梅拉 . 2003 Overview of 喷射 results 核聚变 45 63-85
P-H反驳 . 1992 Fusion energy production from a deuterium-tritium plasma in the 喷射 托卡马克 核聚变 32 187-203
韦森杂志2004 托卡马克 (牛津大学出版社)
喷射 public website: www.jet.efda.org

版权©2020年由IOP 出版 Ltd和个人贡献者